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Abstract
A new scheme of the modified embedded atom method (MEAM) is developed
by modifying the analytic form of the embedding function. The new MEAM
parameters for Mo, W, V, Nb, Ta and Fe have been determined by relating
them to not only bulk properties but also some non-bulk properties. The new
scheme was applied to calculate the elastic stiffness of the crystal, the vacancy
formation energy, the lattice stability, the surface energies for low-index crystal
faces and the bond length and the binding energy for the dimer. The results
give a fairly good agreement with the experimental data.

1. Introduction

The modified embedded atom method (MEAM) potential was proposed by Baskes et al, as
a method to calculate the energy of a multi-atom system. The MEAM is a semi-empirical
quantum mechanical calculation, which is based on density-functional theory [1, 2].

The MEAM has been widely applied to bulk systems and shows a good ability to accurately
describe the properties of many materials [3–8]. Recently, the MEAM has also been tried for
some non-bulk systems, such as the (110)-(1×2) missing row surface reconstructed of several
fcc materials [9], the (100)-(1 × 5) hexagonal surface reconstructions of Ir [10], and some
properties of the Si(100) and (111) surfaces [11, 12]. The applicability of the MEAM to
non-bulk systems has also been proved by the calculations of the bond length of the dimer for
23 materials [13] and the most stable structure for silicon clusters Si2–Si10 [14].

All the results above suggest that the MEAM is a useful tool to calculate non-bulk
properties. However, it was found that the MEAM has an apparent error: it returns negative
values of surface energy for Li(100), Li(110) and Li(111), if the relaxation of surface atom
positions is taken into account. In order to correct this problem, we developed a new scheme
to obtain the MEAM potential. In this scheme, a new parameter κ is introduced into the
embedding function,and a formula is chosen to obtain the background electron density from the
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partial electron densities, which will never return a negative or divergent value. Furthermore, in
order to increase the applicability of the MEAM to non-bulk systems, the MEAM parameters
are determined by not only bulk properties but also some non-bulk properties, such as the
bond length of the dimer and the change of surface interlayer distance. In [15], we applied
this scheme to determine the potential of lithium and calculated many properties of bulk and
non-bulk systems for Li. The results were compared with the experimental data and they have
fairly good agreement.

The purpose of this work is to apply this new scheme of the MEAM to bcc transition metals
(Mo, W, V, Nb, Ta and Fe) and to prove that the new MEAM potential can be transferred to other
bcc metals. The validity of the new potential is examined by calculating several properties of
bcc transition metals such as the vacancy formation energy, the low-index surface energies,
and the bond length and binding energy for the dimer. The results are compared with available
values in the literature.

2. Theory

2.1. The model

In the MEAM theory [1–4, 10, 15], the total energy E of a system of a single type of atom can
be written as the following:

E =
∑

i

[
F(ρ̄i ) + 1

2

∑
j ( �=i)

φi j(Ri j )

]
. (1)

Here, F is the embedding function, which depends on the background electron density ρ̄i at
site i , φi j is a pair interaction between atoms i and j and Ri j is the distance between atom i
and atom j .

The embedding function F is the energy to embed an atom into the electron sea
(background electron density) constituted by all other atoms of the system. Here, F is taken
as

F(ρ̄i ) = AE0(ρ̄i/Z0)(ln(ρ̄i/Z0) − κ) (2)

where A and κ are the parameters to be determined in the following section, E0 is the
sublimation energy (the negative of the cohesive energy Ecoh) and Z0 is the number of nearest
neighbours in the bulk of the perfect crystal (for bcc materials Z0 = 8).

The background electron density ρ̄i is assumed to be a function of partial electron densities
ρ

(l)
i l = 0–3 [2], which is written as

ρ
(0)
i =

∑
j ( �=i)

ρ
a(0)
j (Ri j) (3a)

(ρ
(1)

i )2 =
∑

α

[∑
j ( �=i)

xα
i jρ

a(1)

j (Ri j)

]2

(3b)

(ρ
(2)
i )2 =

∑
α,β

[∑
j ( �=i)

xα
i j x

β

i jρ
a(2)
j (Ri j )

]2

− 1
3

[∑
j ( �=i)

ρ
a(2)
j (Ri j)

]2

(3c)

(ρ
(3)
i )2 =

∑
α,β,γ

[∑
j ( �=i)

xα
i j x

β

i j x
γ

i jρ
a(3)
j (Ri j )

]2

(3d)

where xα
i j = Rα

i j/Ri j , and Rα
i j is the α component of the distance vector between atoms j

and i . The ρ
a(l)
j (Ri j) l = 0–3 are the partial atomic electron densities which are contributed
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by atom j at a distance Ri j from site i . The equations of partial atomic electron density have
been assumed to be given by a simple exponential form [2]

ρ
a(l)
j (Ri j) = exp(−β(l)(Ri j/R0 − 1)) (4)

where R0 denotes the equilibrium nearest-neighbour distance in the bulk of the perfect crystal,
and the exponential decay factors for the atomic densities,β(l), are parameters to be determined.

In general, the background electron density can be obtained from the partial electron
densities as

ρ̄i = ρ
(0)

i G(�) (5)

with

G(�) = 2

1 + exp(−�)
(6)

and

� =
3∑

l=1

w(l)(ρ
(l)
i /ρ

(0)
i )2 (7)

where w(l) are the weighting factors for the atomic densities.
In order to determine the pair interaction φi j , we consider the reference structure as a

homogeneous monatomic solid with interactions limited to the first neighbours only [2]. In
the reference structure, φi j can be quite easily obtained by using equation (1)

φi j = 2

Z0
[Eu(Ri j ) − F(ρ̄0

i )] (8)

where ρ̄0
i is the background electron density for the reference structure and Eu is the energy

per atom for the reference structure as a function of the nearest-neighbour distance Ri j ; it is
given by a universal energy function proposed by Rose et al [16],

Eu(Ri j) = −E0(1 + a∗)e−a∗
(9)

with

a∗ = α(Ri j/R0 − 1). (10)

Here α is an exponential decay factor, which is related to the bulk modulus.
Using this pair interaction, φi j and equation (1), the energy per atom, Ei , for any

configuration of atoms is given by

Ei = 1

Z0

∑
j ( �=i)

Eu(Ri j) +

[
F(ρ̄i ) − 1

Z0

∑
j ( �=i)

F(ρ̄0
i )

]
. (11)

The key difference of this scheme from the original MEAM is that we introduce a new
parameter κ into the embedding function, and it is used as a constant value of zero in the
original MEAM. In figure 1 we show the effect of parameter κ on the energy per atom in both
an atom in the bulk and at the surface for iron. This effect will disappear in most applications
of bulk properties because of symmetry (figure 1(a)), but κ strongly affects the shape of the
curve of Ei in non-bulk systems as shown in figure 1(b). This means κ has an influence on the
properties of non-bulk systems. So we suppose that we can improve the applicability of the
MEAM to non-bulk systems by determining a proper value of κ .
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Figure 1. Effect of parameter κ on energy per atom. (a) Atom in bulk; (b) atom at surface.

Table 1. Values of physical quantity and their error estimate ε (%) used to determine the MEAM
parameters. The values listed are the bulk modulus B (GPa) [17], two kinds of shear elastic
constant, γ and γ ′ (GPa) [17], the bond length and the binding energy for the dimer, rde (au) and
Ede(eV/atom), structure energy differences and relative changes in nearest-neighbour distances for
both fcc to bcc and simple cubic to bcc, 	Ef−b, 	Es−b (eV) and 	rf−b, 	rs−b (%) [2, 3, 20], and the
relaxation of the interlayer spacing, 	d12 and 	d23 (%) for the (100) and (110) surfaces [3, 21, 22].

(100) (110)

B γ γ ′ rde Ede 	Ef−b 	rf−b 	Es−b 	rs−b 	d12 	d23 	d12 	d23

Mo 265 111 145.5 1.939 4.20 0.28 6 0.12 −4 −3.3 0.3 −3.3 0.6
W 307.7 157 157 2.196 2.82 0.33 5 0.20 −3 −3.2 −0.3 −3.1 0.0
V 156.7 43.2 55 1.754 2.41 0.15 8 0.06 −5 −6.7 1.0 −4.2 0.9
Nb 169.7 28.4 56.5 2.130 3.50 0.14 8 0.05 −5 −12.5 3.0 −7.3 2.2
Ta 191.3 82.6 53 2.158 2.65 0.26 7 0.15 −4 −5.9 0.8 −3.5 0.6
Fe 166.7 117 47.5 2.153 1.63 0.03 5 0.21 −3 −1.5 0.0 −1.5 0.1
ε ±5 ±5 ±5 ±10 ±10 ±10 ±10 ±30 ±30 ±20 ±20 ±20 ±20

3. Determination of the parameters

The method for determining MEAM parameters has been fully discussed in [15] and we will
only give a brief review here.

In this scheme, there are 13 parameters for each pure element. Without losing generality,
w(0) can be equal to unity, and E0 and R0 can be obtained from experiments directly. Other
parameters can be determined by relating them to physical quantities of bulk as well as non-
bulk systems, which include the bulk modulus B , two kinds of shear elastic constant, γ and γ ′,
the bond length and the binding energy for the dimer, rde and Ede, structure energy differences
and relative changes in nearest-neighbour distances for both fcc to bcc, 	Ef−b and 	rf−b,
and simple cubic (sc) to bcc, 	Es−b and 	rs−b, and the relaxation of the interlayer spacing
between i th and j th layers, 	di j . The overall values of physical quantity used to determine
the MEAM parameters are obtained from the literature except rde and Ede. These values are
listed in table 1.



Development of modified embedded atom method for bcc transition metals 8921

Table 2. MEAM parameters for Mo, W, V, Nb, Ta and Fe. The values listed are the sublimation
energy E0 (eV), the equilibrium nearest-neighbour distance R0 (Å), the exponential decay factor
for the universal energy function α, the scaling factor for the embedding energy A, the adjustment
parameter for the embedding function κ , the exponential decay factors for the atomic densities β(l)

and the weighting factors for the atomic densities w(l).

E0 R0 α A κ β(0) β(1) β(2) β(3) w(0) w(1) w(2) w(3)

Mo 6.81 2.73 5.8483 1.0000 −0.8913 4.4565 1.1414 1.0000 6.2567 1.0 2.1355 4.9456 −0.3851
W 8.66 2.74 5.6189 0.9800 −2.5754 3.9697 1.1711 1.0000 7.2824 1.0 0.4162 2.2983 −0.0088
V 5.30 2.63 4.8198 1.0000 −0.4629 4.1001 2.8546 1.0000 1.0435 1.0 0.1340 2.7904 3.2616
Nb 7.47 2.86 4.7910 1.0000 −1.4712 4.3712 1.3976 1.0170 5.1653 1.0 0.9194 1.5426 0.2287
Ta 8.09 2.86 4.8891 1.0000 −4.4247 3.9271 1.7002 2.2548 1.6840 1.0 0.3068 0.6159 0.2682
Fe 4.29 2.48 5.0596 0.8931 −0.8354 3.0787 1.0058 2.0267 4.5451 1.0 3.0697 2.2889 −0.6446

The dissociation energies and the atomic distances at equilibrium of the dimer have been
calculated by density functional theory (DFT). The double zeta valence base set, LANL2DZ,
proposed by Hay and Wadt [18, 19] was used in the calculations. This base set was obtained
by using the approximation of the effective core potential (ECP) and fitting to the results of
calculation with full electrons by energy optimization. It has been successfully applied to
calculate compounds including heavy elements. The exchange and correlation interactions
used the functions proposed by Bechel3LYP [29–31]. The computations were performed
using the Gaussian98W program package [32].

By using the quantities above, ten nonlinear functions can be obtained. The MEAM
parameters can be obtained by using a numerical procedure to solve the simultaneous equations.
Because the correct value of each property has considerable uncertainty, we have estimated
the error of each physical quantity based on their correctness. Those estimated errors are also
listed in table 1. In table 2 we propose the MEAM parameters for the bcc transition metals of
Mo, W, V, Nb, Ta and Fe.

4. Application

In order to test this model, we calculated the pure metal properties of a wide range of bulks,
surfaces and clusters by using the new MEAM potential. When the MEAM is applied to
the problems of vacancy and surface, the initial nearest-neighbour distance is set to be the
equilibrium nearest-neighbour distance in the bulk, and the stable positions for atoms are
determined by the procedure of relaxation described follows:

First, we move one atom in the X direction to a locally stable position, then Y and Z
directions. Next, another atom is moved to its locally stable position. Following the same
procedure, all the atoms will be moved one by one to their locally stable positions. After the
last atom, we go back to the first one and do it again. The whole procedure shall be repeated
until the stable positions of all atoms are fixed, namely, they do not move any more under this
operation.

Moreover, an assumption is used in this scheme that the interaction is restricted to the
nearest neighbour only, so either a cut-off function or screening procedure is necessary. We
choose the screening function, which is defined by Baskes [2].

For these bcc transition metals, the three elastic stiffnesses of the crystal, C11, C12 and C44,
have been calculated, and the results are in fairly good agreement with experimental values as
shown in table 3.

Figure 2 shows the lattice stability of bcc, fcc, hcp, dia and sc structures for different
atomic distances. From figure 2 we can see the bcc structure is stable at the equilibrium atomic
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Table 3. Calculated values of the elastic stiffness C11, C12 and C44 (GPa) compared to the
experimental values [17].

C11 C12 C44

This work Expt This work Expt This work Expt

Mo 458.04 459 168.48 168 111.00 111
W 516.71 517 203.15 203 157.00 157
V 230.00 230 120.00 120 43.25 43.2
Nb 244.73 245 132.14 132 28.40 28.4
Ta 262.57 262 155.72 156 77.16 82.6
Fe 231.74 230 134.14 135 117.15 117

Table 4. Calculated vacancy formation energy, in electronvolts. Experimental values are from [23]
and [24], and other calculations are from [25] except for Fe, which is from [26].

Present Expt Other calculations

Mo 3.59 3.2 2.2, 2.54, 3.67, 3.13
W 4.28 3.95 3.8, 3.62, 4.57, 3.27
V 3.06 2.1 2.5, 1.83, 1.5, 3.06
Nb 2.61 2.75 3.2, 2.48, 1.78, 2.92
Ta 3.21 3.1 3.3, 2.87, 2.73, 3.49
Fe 2.12 1.8 2.31, 2.78, 2.44, 2.54, 2.34

distance, R0, and it is the most stable structure for all metals. The fcc lattice is stable at about
1.04R0–1.08R0 and the range of energy difference between fcc and bcc is from 0.03 to 0.33 eV.
The values of 	Ef−b agree quite well with the results of the CALPHAD method [3, 20] that
is listed in table 1. The hcp phase is calculated by assuming the ideal c/a ratio is 1.633.
The calphad method shows that the hcp structure is more stable than the fcc structure and the
differences of energy are about 0.05–0.06 eV [20] or 0.023–0.047 eV [37] for bcc transition
metals. However, the energy differences of this work are lower than 0.01 eV for Mo, W and
Fe; moreover, the energy of the hcp structure is a few hundredths of an electronvolt higher than
the fcc structure for V, Nb and Ta. The experimental values for the simple cubic and diamond
structures are not available. The density functional calculation predicts that the energies of
simple cubic and diamond structures of metals are on the order of electronvolts above the bcc
structure [38]. This work predicts the same order of diamond structure except for Mo, that
is 0.062 eV higher than the bcc structure. For the difference of energy between bcc and sc
structures, this work predicts that it is as small as 0.05–0.3 eV.

The vacancy formation energies of bcc transition metals have been calculated and
compared with experiments and other calculations. From table 4 we can see that the results
from this work agree with experimental values well except for V. The value for V is larger than
experiment by about 50%, and larger than most other calculations. This overestimate of V can
be considered to be due to the uncertainty of some properties which be used to determine the
parameters of the MEAM.

We have calculated the surface energies for low-index crystal faces and compared with the
experimental values and other calculations (table 5). The experimental surface energy data in
table 5 are for polycrystalline solids and these are obtained from high-temperature experimental
data extrapolated to 0 K [27, 28]. Even though the surface energy of a polycrystalline solid
has been described very well by using the local density approximation and jellium-like free-
electron models [39, 40], the surface energies of a particular surface facet are not known well.
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Table 5. Calculated surface energies for low-index crystal faces, in erg cm−2. The experimental
values are for polycrystalline solids and are those extrapolated from high-temperature experimental
data to 0 K.

Element Property Present 2NN MEAM [3] MEAM92a DFT [41] Ab initio [42] Expt [27, 28]

Mo E100 2892 3130 1712 3837 2900
E110 2745 2885 1818 3454 3180
E111 2417 3373 1588 3740

W E100 2947 3900 2217 4635 2990
E110 2620 3427 2123 4005 3840
E111 2675 4341 1996 4452

V E100 2810 2778 2188 3028 2600
E110 1975 2636 1717 3258 2550
E111 2357 2931 1628 3541

Nb E100 2709 2715 2055 2858 2300
E110 1928 2490 1721 2685 1640
E111 2116 2923 1589 3045

Ta E100 3329 3035 2827 3097 2780
E110 2182 2778 2104 3084 1790
E111 2594 3247 2102 3455

Fe E100 2895 2510 2170 2222 2360
E110 2131 2356 1609 2430 2660
E111 2227 2668 1702 2733

a Calculated by using the MEAM potential proposed by Baskes in [2].

Most first-principles methods have been used only for particular cases, focusing on a few
elements or on a special application for a given metal surface. Recently Vitos et al [41] have
used the density functional theory to establish a database of surface energies for low-index
surfaces of 60 metals, and Skriver and Rosengaard [42] performed an ab initio study of the
surface energy for close-packed surfaces of 40 elemental metals. As shown in table 5, however,
the value of the ab initio study is very small for Nb and Ta, and somewhat large for W and
Fe, and the results of the DFT overestimate the surface energy except for Fe. For the MEAM
results, the surface energies are comparatively underestimated using the MEAM92 potential [2]
for all bcc transition metals, and both this work and the 2NN MEAM model [3] may describe
the surface energy much better than other calculations.

Finally, the relation between atomic distance and energy per atom for dimers of bcc
transition metals was also calculated (figure 3). For the bond length of bcc transition metals,
the ab initio calculation results are 1.938 and 1.937 Å for Mo [33, 34], 1.703 and 1.774 Å for
V [35, 36], 2.19, 2.01, 2.11 and 2.10 Å for Nb [34] and 2.01 Å for Fe [36]. In this work the
dimer bond lengths are respectively shorter than the bulk nearest-neighbour distance values
by 21.55% for Mo, 19.85% for W, 33.30% for V, 25.53% for Nb, 24.54% for Ta and 13.18%
for Fe. The results give a good agreement with other calculations. Moreover the energy per
atom is close to zero when the distance of the atoms increases to 5–6 Å. We can see that the
proposed scheme and parameters are able to describe the dimer property very well. Because
the electronic state of the dimer is most different from the bulk state, this strongly suggests
that the new MEAM is a useful tool for non-bulk systems.

5. Conclusions

In order to increase the applicability of the MEAM to non-bulk systems, a new scheme of
the MEAM has been developed. The potential parameters are determined by relating them
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Figure 3. Relation between atomic distance and energy per atom for dimers of bcc transition
metals.

with bulk, surface and dimer properties. We investigate many bulk and non-bulk properties of
several bcc transition metals, Mo, W, V, Nb, Ta and Fe, with the new MEAM potential, and
the results show that the new scheme and parameters work well for bcc transition materials.
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